Following tooth extraction, physiologic wound healing leads to alterations in gingival architecture including alveolar bone resorption, gingival recession and papilla loss. This is especially common in patients with thin periodontal biotypes. These alterations very often compromise tissue morphology and lead to esthetic challenges with implant restorations.

Numerous surgical techniques are available to reconstruct post extraction defects. However, the old cliché, ‘An ounce of prevention is worth a pound of cure’ very much applies to the extraction defect and all efforts should be made to minimize these morphologic changes. It is technically easier and less costly to preserve the alveolus at the time of tooth extraction as opposed to enhancing it following physiologic remodeling. Therefore, various procedures and materials have been recommended to improve the esthetics of implant restorations.

Peri-implant biotype enhancement using interpositional connective tissue grafts

Patient 1

Fig. 1a: Clinical presentation of failing restoration with recurrent decay tooth No. 8.

Fig. 1b: Failing post and core with peri-apical radiolucency.

Fig. 1c: Connective tissue graft draped over the crest, demonstrating large size required for vascularization prior to placement beneath tunnel flaps.

Fig. 1d: Interpositional connective tissue graft placed over socket graft and secured with sutures.

Fig. 1e: Periodontal biotype enhancement with favorable gingival margin and papilla preservation.

Fig. 1f: A flapless surgical approach was used to minimize tissue trauma.

Fig. 1g: Ideal soft tissue esthetics achieved (restoration by Dr. Glenn Bickert).

Fig. 1h: Radiograph of final screw-retained, UCLA restoration.

Fig. 1i: One year post-op demonstrating stable results.

Fig. 1j: One year post-op demonstrating stable results.

NEW KODAK R4 version III

Practice Management Software

NOW WITH

• Credit Card Processing
• On-line Patient Appointment Booking
• Web Based Option with Hosting Service

NEW R4 Version 3 is the most advanced software of its kind. Developed with working Dentists, version three brings you a host of new features which include:

Credit card processing - links R4 with your PIN machine removing the possibility of errors and eliminating the need to reconcile your credit card transactions each month.

On-line patient appointment booking - offers your patients a web interface to make their own appointments. You control the type and times of appointments you offer.

The web option with hosting service - frees you from the rigours of managing dental software. You never have to install an update and never have to back up. Simply log onto the web and use the system secure in the knowledge that PracticeWorks are managing everything for you.

Time to move on to the next level

For more information or to place an order please call 0800 169 9692 or visit www.practiceworks.co.uk

PracticeWorks
Exclusive makers of Kodak Dental Systems

© PracticeWorks Limited 2008 The Kodak trademark and trade dress are used under license from Kodak.
Implant placement to improve pre-existing soft tissue architecture. The most common include placement of bone grafts within the extraction sockets, the use of membranes and connective tissue grafts as well as placement of immediate implants.

In addition, patients who seek dental implants to replace failing teeth often present with pre-existing hard and soft tissue defects, which can potentially lead to esthetic disasters if not managed appropriately. These types of clinical conditions are extremely challenging to treat and require ancillary procedures either prior to or concurrent with implant placement to improve the final esthetic result.

Strategies to manage the extraction defect have been previously published, which provide algorithms to help guide implant treatment procedures immediately following tooth extraction. This article presents three clinical cases reports using these guidelines and demonstrates the benefits of using large, thick interpositional connective tissue grafts in conjunction with tooth extraction and site preservation as well as during immediate implant placement to enhance the peri-implant biotype and improve soft tissue architecture.

Patient 1
A 52-year-old female patient presents with recurrent decay and a failing post and core restoration on tooth No. 8 (Figs. 1a, b). A thin periodontal biotype was recognized as noted by the tapered tooth form and long slender papilla and a high smile line further challenges esthetic management.

Immediately following extraction, the socket was categorized as an EDS Type II defect due to the thin periodontal biotype even though the bony socket was completely intact. Therefore, a staged implant approach was chosen per previously published guidelines. The extraction defect was grafted with a composite anorganic bone matrix (Bio-Oss, Ostearthly®) and a demineralized bone allograft.

A large, thick autologous connective tissue graft was harvested from the palate and placed beneath the tunnel flap as well as during immediate implant placement in order to promote graft vascularisation and results in improved soft tissue architecture with an improved biotype (Fig. 1c).

Patient 2
A 54-year-old male patient presents with a hard and soft tissue defect associated with a periodontal abscess secondary to root resorption on tooth No. 9 (Fig. 2a). An ideal restorative outcome was achieved by the maintenance of the gingival margin and papillae. (Restoration by Dr. Glenn Bickert, Laguna Hills, Calif.).

Prognostically, the residual socket defect was grafted with a composite anorganic bone matrix (Bio-Oss, Ostearthly®) and a demineralized bone allograft. The extraction defect was categorized as an EDS Type III defect due to the more severe buccal bone defect and the adjacent socket was categorized as an EDS Type II defect due to the more severe buccal bone defect and the adjacent socket was completely repaired in a two-stage approach.

Patient 3
A 42-year-old female patient presents with a chronic endodontic abscess and buccal fistula involving tooth No. 10. A thin periodontal biotype was noted along with a deep high smile line including pre-existing papilla loss between the central incisors (Figs. 3a, b). The tooth was extracted atraumatically and the socket debrided, irrigated and evaluated with a periodontal probe.

The extraction defect was categorized as an EDS Type II defect due to minimal fenestration of the buccal plate. The adjacent socket walls including the buccal crest were otherwise intact, therefore the defect appeared amenable for immediate implant placement in conjunction with ancillary procedures.

Following implant placement the residual socket defect was grafted with a composite anorganic bone matrix (Bio-Oss, Ostearthly®) and a demineralized bone allograft. Similar to the previous two patients, a large, thick autologous connective tissue graft was harvested and placed beneath the full thickness buccal and palatal tunnels adjacent to the socket as well as over the implant (Fig. 5e).

Once again, vascularity to the soft tissue graft is achieved given the greater graft dimension beneath the tunnel flaps, and therefore primary closure is unnecessary. The soft tissue graft is positioned and secured using the previously described technique. The bone and soft tissue graft complex is allowed to heal for approximately six months prior to uncovering. The final restoration of the implant was followed as with the previous clinical situation. Immediately following extraction, the socket was categorized as an EDS Type III defect due to the more severe buccal bone loss, and therefore a staged implant approach was necessary. The extraction defect was grafted with a composite anorganic bone matrix (Bio-Oss, Ostearthly®) and a demineralized bone allograft (Fig. 2b). A large, thick connective tissue graft was harvested from the palate and placed beneath the full thickness buccal and palatal tunnels adjacent to the socket. The greater majority of the soft tissue graft is beneath the full thickness tunnel flaps in order to promote graft vascularisation and the soft tissue graft is positioned and secured as previously described (Fig. 2d).

A removable partial denture was used as a provisional appliance (Fig. 2e) and the bone and soft tissue graft complex was allowed to heal for approximately four months prior to implant placement. The site preservation procedure in conjunction with the interpositional connective tissue graft results in improved soft tissue architecture and the pre-existing soft tissue defect (Fig. 2f). A flapless surgical technique is then utilized to place the implant (Fig. 2g). The implant is allowed to heal for an additional six months and restored with a porcelain fused to metal restoration cemented onto a custom lab fabricated abutment.

CATTANI compressors

- Oil-less systems supplying oil free, dry compressed air
- Quiet operation for undisturbed working
- Teflon coated receiver
- Improved sound proofing on new ranges
- HTM 2022 compatible
- Versions available for one to one hundred chairs

Three year guarantee on all compressor components so you can ‘fit and forget’.

Contact your local dealer
or Tel: 01527 877997
or email info@cattaniesam.co.uk

now we know why . . . it’s got to be CATTANI

The Pump House, 21a, Harris Business Park, Harbury Road, Stoke Prior, Bromsgrove, Worcestershire B60 4D1
Fax: 01527 839799 Email: info@cattaniesam.co.uk Web: www.cattaniesam.co.uk

· October 20–26, 2008 · page 21
achieved using a custom gold abutment (Fig. 3d, e) and porcelain veneers were placed on the maxillary anterior teeth (Fig. 3f). An excellent esthetic outcome was achieved. (Restorations by Dr. Jon Marashi, San Clemente, Calif.).

These three clinical situations demonstrate the clinical benefits of incorporating large, thick interpositional autologous connective tissue grafts during site preservation and immediate implant placement surgery. When used appropriately, these grafts vascularise completely, even without complete primary closure. The grafts seem to improve the soft tissue biotype and enhance soft tissue esthetics adjacent to implant restorations by minimising gingival recession and interproximal papilla loss.

Live surgical demonstration of this technique as well as many others will be showcased during the American Academy of Implant Dentistry’s 57th annual meeting on Oct. 29–Nov. 1 in San Diego. For more information, see www.aaid.com.

References

About the author
Dr. Nick Caplanis
is an assistant professor and part-time faculty within the Graduate Program in Implant Dentistry, at Loma Linda University School of Dentistry. Dr. Caplanis has an extremely unique background with formal residency training in the interrelated fields of Implant surgery, Prosthodontics and Periodontics. He is board certified and a diplomate of both the American Board of Periodontology, and the American Board of Oral Implantology and is a Fellow of the American Academy of Implant Dentistry. He is also the general meeting chairman for the 57th Annual Meeting of the American Academy of Implant Dentistry, to be held in San Diego from Oct. 29–Nov. 1.